Какими могут быть летательные аппараты XXI века

Потребительские качества любого успешного в коммерческом отношении летательного аппарата (ЛА) должны строго соответствовать иерархии основных целевых свойств на всех этапах его жизненного цикла:
I. Безопасность и надежность.
II. Эффективность и комфорт (аэроэкономичность) в широком смысле.
Современный проект создания самолета коренным образом отличается от проектов 70-80-х годов прошлого века прежде всего масштабностью подхода. По существу, сегодня проектируют не просто летательные аппараты, а разрабатывают полный сценарий жизненного цикла самолета как элемента авиационного комплекса. При этом главное усилия основных мировых производителей коммерческих ЛА лежат в области расширения набора услуг, предоставляемых своим эксплуатантам, организации гибкой системы сервиса и снижения расходов, а не только в совершенствовании собственно продукта.
Примечателен заключается в том, что современные самолеты все ближе и ближе подходят к некому пределу своей эффективности, обусловленному применением традиционных подходов к проектированию. Продолжение развития экономических характеристик летательных аппаратов связано с применением новых, зачастую революционных технических решений.
Здесь возникает проблема соответствия новых ЛА свойствам уровня I (безопасность и надежность), так как любая новая идеология несет в себе низкую вероятность предсказуемости ее функционирования, шансы полного отсутствия предыдущего опыта ее использования. Тем не менее, эту проблему неизбежно придется решать при переходе к новому поколению летательных аппаратов.
Задача повышения эффективности и экономичности составляет основу второго порядка важности и обусловливает основную причину перехода к новым техническим решениям.

А. Ермюшин,
Генеральный директор Саратовского авиационного завода, профессор

Б. Сорокодум,
Генеральный директор ООО "Вихре-колебательные технологии",
кандидат технических наук

Решение проблемы улучшения этих характеристик может вестись по трем направлениям:
1. Применение концепций, ориентирующихся на классическую аэродинамику и механику.
2. Перспективы создания летательных аппаратов на основе создания гибких и подъемной силы с помощью колеблющихся крыльев или других неподвиженных элементов на основе использования виbroперестраиваемой аэродинамики и механики.
3. Перспективы создания летательных аппаратов на основе создания гибких и подъемной силы с помощью колеблющихся крыльев или других неподвиженных элементов на основе использования виbroперестраиваемой аэродинамики и механики.

Улучшение характеристик летательных аппаратов в рамках концепций, ориентирующихся на классическую аэродинамику и механику

По иронии судьбы пути продолжаются работать большинство фирм. В течение десятков лет во многих авиационных фирмах мира ведутся исследования по поиску путей снижения аэродинамического сопротивления. Например, сейчас в Европе, в том числе с компанией Airbus, начались работы по программе "Авиатор" (AWIATOR — Aircraft Wing with Advanced Technology OpeRation). Программа "Авиатор" нацелена на то, чтобы добиться снижения аэродинамического сопротивления на 5-10%, уменьшения расхода топлива при полете по маршруту большой протяженности на 2% и снижения эффективного уровня воспринимаемого шума на 2 децибела. По оценке специалистов фирмы Boeing исследования по дальнейшему снижению аэродинамического сопротивления требуют все большего финансирования и дает все меньше результаты. В то же время каждый год создаются новые образцы летательных аппаратов (самолетов, вертолетов, микрореактивных аппаратов, вертикального взлета и посадки и др.). Эти летательные аппараты, которые вызывают интерес, несмотря на все усилия, не отвечают требованиям современной авиации.

50 САМОЛЕТ №5-6 2003 г.
Публикации, а затем забываются из-за того, что они не представляют широкого практического интереса по причине, что их экономичность, маневренность и другие характеристики низкие. Но работы на изобретательском уровне по этому направлению продолжаются. Попытка для создания летательных аппаратов с качественно лучшей экономичностью и маневренностью служит базированию разработок на классическую аэродинамику и механику. Надо понять, что возможности классической аэродинамики почти исчерпали себя.

Переход на создание летательных аппаратов на основе создания тяги и подъемной силы с помощью колеблющихся крыльев или других рабочих элементов на основе использования квазиstationарной аэродинамики и механики

Интересно, что 200-100 лет назад основные усилия изобретателей были сосредоточены на создании летательных аппаратов с колеблющимися крыльями. В то время аэродинамика как наука не существовала. Поэтому попытки создания летательного аппарата сосредоточивались на сложном поддержании полета птиц и насекомых. В результате экспериментов с неподвижным крылом на воздушные братья Райт и теоретическими работами Н.Е. Жуковского и других начали рождаться сгенирования авиации. Только отход от сложного поддержания и примитивного изобретательского уровня к научным исследованиям позволил родиться авиации и достигнуть современного этапа.

Но, как писалось выше, дальнейшее улучшение экономичности и маневренности современной авиации, несмотря на огромные финансовые и людские ресурсы, не пройдет.

Однако, реалии попытки создания летательных аппаратов с колеблющимися крыльями (махолетов) продолжались, но оставались на пути поддержания полету птиц, то есть на пути использования квазиstationарной аэродинамики и механики. Эти работы, как правило, велись отечественными институтами. Сейчас начался активные попытки создания летательных аппаратов с колеблющимися крыльями силами конструкторских бюро, научно-исследовательских лабораторий и профессиональных учёных. Такие работы активно ведутся в США, России, Канаде, ФРГ, Франции, Японии, Южной Корее и в Китае.

Эти аппараты начинают серьёзно рассматривать, как имеющие возможность решить проблемы экономичности и маневренности аэротехнических. Естественно, что работы начались с создания малых летательных аппаратов. Наиболее интенсивно работы ведутся в США. Здесь в последнее 10 лет более 15 лабораторий ведут разработки микровоздушных аппаратов (МАУ). Примечательно, что за последние годы все большие лаборатории отказываются от традиционных схем летательных аппаратов (самолёты, вертолёты, взлётно-посадочные платформы) и переходят на использование махолетов. В США разрабатывается робот для исследования марса, который будет летать с помощью колеблющихся крыльев.

В работах еще присутствует большой элемент копирования конструкторских и законов колебания крыльев птиц и насекомых. Разработки этих летательных аппаратов, как правило, происходят на основе использования квазиstationарной аэродинамики и механики. В результате создаются летательные аппараты, имеющие экономичность, ограниченную классической аэродинамикой (о которой говорилось выше) и имеющую конструкцию более сложную, чем имеют аппараты традиционных схем. По сути, сейчас происходит ренессанс махолетов ими вошедших в 200-летнюю историю, только с применением современных двигателей, материалов и авионики. Поэтому этот путь не может дать большого успеха.


В последнее время появились летательные аппараты с колеблющимися крыльями, в которых произошла отход от слепого копирования махолета к использованию аэродинамических принципов создания тяги и подъемной силы. Наиболее эффективный летательный аппарат BAT-13, Kite 04, разработка SRI International (Scott Stanford, Roy Kornbluh, Tom Low) and University of Toronto Institute for Aerospace Studies (J. DeLaurier, D. Locwen, P. Zdunick), аппарат разработки Naval Postgraduate School, Monterey, California, USA (Prof. M.F. Platzker, Dr. K.D. Jones), аппарат разработки Georgia Tech Research Institute (Dr. R. Michelson). И, наконец, летательный аппарат с колеблющимися концами крыльев HACA (Project at NASA's Langley Research Center).

Но эти аппараты, несмотря на достигнутые успехи, не могут дать качественного скачка улучшения своих характеристик из-за того, что они используют квазиstationарных аппаратов, которые создают тягу и подъемной силы. Использование квазиstationарных колебательных режимов, наверное, является неизбежным переходным этапом на пути к использованию нелинейной колебательной аэродинамики.

Нелинейная колебательная аэродинамика может позволить:
1. Увеличить подъемную силу и тягу при прежней ометаемой площади и подведенной мощности.
2. Увеличить эффективную аэродинамическую площадь по сравнению с площадью, ометаемой самим колеблюющимся крылом. Тем самым увеличить экономичность двигателю-двигательного комплекса.
3. Создавать волновое обтекание аппарата и многократно снизить аэродинамическое сопротивление, что даст на это дополнительную энергию.
4. Совместить создание сил и управление в одних рабочих элементах.
5. Увеличить управляемость аппарата при малых скоростях и высоте на месте.
6. Частично утилизировать энергию от струи струи.

Нелинейная колебательная аэродинамика находится в стадии за-
рождения. Имеется множество разнозначенных публикаций и научных отчетов. Еще нет ни одной монографии.

Сейчас в мире ведут исследования на основе использования нелинейной колебательной аэродинамики:
2. Naval Postgraduate School, Monterey, California, USA (Prof. M. F. Platzer, Dr. K.D. Jones, около 10 лет исследований).
3. Massachusetts Institute of Technology, Cambridge, USA (Dr. M.S. Triantafyllos, вращающиеся полудвигатели аппараты с колеблющимися гидроцилиндрами, около 10 лет исследований).

Использование нелинейной колебательной аэродинамики и колебательных систем может привести к созданию летательных аппаратов и устройств, которые в несколько раз более высокую экономическую и высокую маневренность аппаратов, в том числе с вертикальным взлетом и зависанием на местах. Но разработка этих аппаратов требует на порядок больших научных и инженерных работ. При этом аппараты могут быть проще и дешевле, чем существующие.

Требуется начать интенсивные исследования нелинейной колебательной аэродинамики, принципов разработки аппаратов на основе колебательной системы и систем адаптивного управления двигателей-двигательных комплексов. Объем научно-исследовательских и других работ таков, что целесообразна международная кооперация этих работ.

Заключение

Есть основание считать, что авиация во всем мире вошла в глобальный кризис. Это связано с тем, что из-за высокой стоимости авиационных перевозок и услуг рынок практически не расширяется. Больше всего сокращаются емкости рынка может произойти, если стоимость авиационной техники резко упадет. Сейчас это уже возможно сделать, если начать создавать авиацию нового типа на основе использования нестационарной колебательной аэродинамики.

Выводы:
1. Возможности существенного усовершенствования современной авиации исчерпаны.
2. Рынок находится на грани насыщения. Авиационные предприятия, выпускающие авиационную технику, уступающую по экономичности, виброакустическим характеристикам, сервису и стоимости конкурирующей продукции обречены на банкротство.
3. Емкость рынка сдерживается очень высокой стоимостью перевозок и услуг современной авиации. Ситуацию можно резко изменить к лучшему, если перейти к созданию авиации нового типа на основе использования нестационарной колебательной аэродинамики.
4. Современный уровень знаний, компьютерного и программного обеспечения, наличие необходимых специалистов высшей квалификации, а также наличие комплектующих и материалов позволяет решить задачу по созданию авиации нового типа.
5. Сейчас, в основном в США, осваиваются новые летательные аппараты с колеблющимися крыльями. Это микро- и миcro-летательные аппараты. Затем следует освоение летательных аппаратов с колеблющимися рабочими элементами класса малой авиации, а затем многотоннажной авиации.
6. Создание новой авиации по новым принципам началось с небольших предприятий. Это позволяет уменьшить риски, сократить время разработок и оперативно прибегать к работе лучших специалистов.
7. Лучшие образцы авиации нового типа, созданные на малых предприятиях, перекрещиваются на серийные авиационные предприятия.
8. При оперативной организации работы первые образцы авиации нового типа можно получить уже через 1,5 года.

Россия имеет намного меньше финансовые возможности современных самолетов на основе классической аэродинамики. Россия может финансировать разработку авиации нового типа потому, что это потребует на два порядка меньшее финансирования. Если Россия сосредоточит внимание на этом направлении, то рынок и будущие продажи превысят в десятки раз объемы сегодняшних продаж.